Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622912

ABSTRACT

The blue shark is a highly migratory species with a worldwide distribution, making it susceptible to multiple fishing fleets across the globe. In southern Brazil, it is an important target, comprising up to 40% of the total biomass landed by the commercial surface longline fleet. This study aims to contribute to a better understanding of how the species uses the region and to update its life-history information available for future assessments. Over five consecutive years (2018-2022) of landings and onboard monitoring, we gathered size data and vertebral samples to describe the species size composition in the region, as well as its seasonal and interannual variability and to update estimated life-history parameters. The results showed that southern Brazil is mainly inhabited by large juvenile males that arrive during winter (July-September) and stay until spring (October-December), when their frequency decreases. Small adult males are present throughout the year but in higher frequencies during summer. A small number of adult females are present with higher frequencies during spring and summer, which decreases during the austral autumn and winter. Some variability in the presence of each life stage was observed among years. The estimated life-history parameters were as follows: L∞: 255.02 cm fork length (FL), k: 0.20, L0:35.68 cm FL for males; L∞: 246.47 cm FL, k: 0.23, L0:36.77 cm FL for females; and L∞: 269.58 cm FL, k: 0.18, L0:36.19 cm FL for pooled sexes. However, the estimated values must be cautiously interpreted, as the obtained samples cannot be construed as representative of the entire harvested stock due to the lack of consistent presence of some life stages in the study region.

2.
Sci Adv ; 9(16): eadf4888, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075119

ABSTRACT

Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.


Subject(s)
Blood-Brain Barrier , Parkinson Disease , Animals , Blood-Brain Barrier/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/genetics , Brain/metabolism , Macaca , Positron-Emission Tomography , Magnetic Resonance Imaging
3.
Neurobiol Dis ; 176: 105930, 2023 01.
Article in English | MEDLINE | ID: mdl-36414182

ABSTRACT

Levodopa (L-DOPA) administration remains the gold standard therapy for Parkinson's disease (PD). Despite several pharmacological advances in the use of L-DOPA, a high proportion of chronically treated patients continues to suffer disabling involuntary movements, namely, L-DOPA-induced dyskinesias (LIDs). As part of the effort to stop these unwanted side effects, the present study used a rodent model to identify and manipulate the striatal outflow circuitry responsible for LIDs. To do so, optogenetic technology was used to activate separately the striatal direct (D1R- expressing) and indirect (D2R- expressing) pathways in a mouse model of PD. Firstly, D1-cre or A2a-cre animals received unilateral injections of neurotoxin 6-hydroxydopamine (6-OHDA) to simulate the loss of dopamine observed in PD patients. The effects of independently stimulating each pathway were tested to see if experimental dyskinesias could be induced. Secondly, dopamine depleted A2a-cre animals received systemic L-DOPA to evoke dyskinetic movements. The ability of indirect pathway optogenetic stimulation to suppress pre-established LIDs was then tested. Selective manipulation of direct pathway evoked optodyskinesias both in dopamine depleted and intact animals, but optical inhibition of these neurons failed to suppress LIDs. On the other hand, selective activation of indirect striatal projection neurons produced an immediate and reliable suppression of LIDs. Thus, a functional dissociation has been found here whereby activation of D1R- and D2R-expressing projection neurons evokes and inhibits LIDs respectively, supporting the notion of tight interaction between the two striatal efferent systems in both normal and pathological conditions. This points to the importance of maintaining an equilibrium in the activity of both striatal pathways to produce normal movement. Finally, the ability of selective indirect pathway optogenetic activation to block the expression of LIDs in an animal model of PD sheds light on intrinsic mechanisms responsible for striatal-based dyskinesias and identifies a potential therapeutic target for suppressing LIDs in PD patients.


Subject(s)
Dyskinesias , Parkinson Disease , Mice , Animals , Levodopa/pharmacology , Dopamine/metabolism , Parkinson Disease/metabolism , Corpus Striatum/metabolism , Oxidopamine/toxicity , Antiparkinson Agents/pharmacology , Disease Models, Animal
4.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35731990

ABSTRACT

BACKGROUND: Angiogenesis is regulated by multiple genes whose variants can lead to different disorders. Among them, rare diseases are a heterogeneous group of pathologies, most of them genetic, whose information may be of interest to determine the still unknown genetic and molecular causes of other diseases. In this work, we use the information on rare diseases dependent on angiogenesis to investigate the genes that are associated with this biological process and to determine if there are interactions between the genes involved in its deregulation. RESULTS: We propose a systemic approach supported by the use of pathological phenotypes to group diseases by semantic similarity. We grouped 158 angiogenesis-related rare diseases in 18 clusters based on their phenotypes. Of them, 16 clusters had traceable gene connections in a high-quality interaction network. These disease clusters are associated with 130 different genes. We searched for genes associated with angiogenesis througth ClinVar pathogenic variants. Of the seven retrieved genes, our system confirms six of them. Furthermore, it allowed us to identify common affected functions among these disease clusters. AVAILABILITY: https://github.com/ElenaRojano/angio_cluster. CONTACT: seoanezonjic@uma.es and elenarojano@uma.es.


Subject(s)
Computational Biology , Rare Diseases , Algorithms , Cluster Analysis , Humans , Phenotype , Rare Diseases/genetics , Semantics
5.
Curr Protoc ; 1(1): e18, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33484488

ABSTRACT

The methods described herein allow for the isolation and expansion of fibroblastic-like ovine Wharton's jelly-derived mesenchymal stromal cells (oWJ-MSC) that, similarly to their human counterparts, adhere to standard plastic surfaces in culture; show a mesenchymal profile for specific surface antigens (i.e., positive for CD44 and CD166); and lack expression of endothelial (CD31) and hematopoietic (CD45) markers as well as major histocompatibility complex (MHC) class-II. Homogeneous cell cultures result from a two-phase bioprocess design that starts with the isolation of mesenchymal stromal cells (MSC) from the Wharton's jelly of ovine umbilical cords up to a first step of cryopreservation. The second phase allows for further expansion of ovine WJ-MSC up to sufficient numbers for further studies. Overall, this methodology encompasses a 2-week bioprocess design that encompasses two cell culture passages ensuring sufficient cells for the generation of a Master Cell Bank. Further thawing and scale expansion results in large quantities of oWJ-MSC that can be readily used in proof of efficacy and safety studies in the preclinical development stage of the development of cell-based medicines. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation and expansion of ovine mesenchymal stromal cells from Wharton's jelly of the umbilical cord Basic Protocol 2: Characterization of ovine mesenchymal stromal cells Basic Protocol 3: Growth profile determination of ovine mesenchymal stromal cells from Wharton's jelly.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Animals , Cell Culture Techniques , Cell Differentiation , Humans , Sheep , Umbilical Cord
6.
Stem Cell Res Ther ; 10(1): 356, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31779673

ABSTRACT

BACKGROUND: Orthopaedic diseases are one of the major targets for regenerative medicine. In this context, Wharton's jelly (WJ) is an alternative source to bone marrow (BM) for allogeneic transplantation since its isolation does not require an invasive procedure for cell collection and does not raise major ethical concerns. However, the osteogenic capacity of human WJ-derived multipotent mesenchymal stromal cells (MSC) remains unclear. METHODS: Here, we compared the baseline osteogenic potential of MSC from WJ and BM cell sources by cytological staining, quantitative real-time PCR and proteomic analysis, and assessed chemical and biological strategies for priming undifferentiated WJ-MSC. Concretely, different inhibitors/activators of the TGFß1-BMP2 signalling pathway as well as the secretome of differentiating BM-MSC were tested. RESULTS: Cytochemical staining as well as gene expression and proteomic analysis revealed that osteogenic commitment was poor in WJ-MSC. However, stimulation of the BMP2 pathway with BMP2 plus tanshinone IIA and the addition of extracellular vesicles or protein-enriched preparations from differentiating BM-MSC enhanced WJ-MSC osteogenesis. Furthermore, greater outcome was obtained with the use of conditioned media from differentiating BM-MSC. CONCLUSIONS: Altogether, our results point to the use of master banks of WJ-MSC as a valuable alternative to BM-MSC for orthopaedic conditions.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteogenesis , Bone Marrow Cells/cytology , Bone Morphogenetic Protein 2/metabolism , Culture Media, Conditioned/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Proteomics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...